ADS

Top Banner Advertisement
  • New features to better understand player behavior with Player Analytics.

  • Find success on Google Play: What app developers can learn from games .

  • Using Credentials between your Server and Google Services.

New Post

Rss

Showing posts with label How-to. Show all posts
Showing posts with label How-to. Show all posts
Monday, March 30, 2009
Android Layout Tricks #3: Optimize with stubs

Android Layout Tricks #3: Optimize with stubs

Sharing and reusing layouts is very easy with Android thanks to the <include /> tag, sometimes even too easy and you might end up with user interfaces that contain a large number of views, some of which are rarely used. Thankfully, Android offers a very special widget called ViewStub, which brings you all the benefits of the <include /> without polluting your user interface with rarely used views.

A ViewStub is a dumb and lightweight view. It has no dimension, it does not draw anything and does not participate in the layout in any way. This means a ViewStub is very cheap to inflate and very cheap to keep in a view hierarchy. A ViewStub can be best described as a lazy include. The layout referenced by a ViewStub is inflated and added to the user interface only when you decide so.

The following screenshot comes from the Shelves application. The main purpose of the activity shown in the screenshot is to present the user with a browsable list of books:

The same activity is also used when the user adds or imports new books. During such an operation, Shelves shows extra bits of user interface. The screenshot below shows the progress bar and cancel button that appear at the bottom of the screen during an import:

Because importing books is not a common operation, at least when compared to browsing the list of books, the import panel is originally represented by a ViewStub:

When the user initiates the import process, the ViewStub is inflated and replaced by the content of the layout file it references:

To use a ViewStub all you need is to specify an android:id attribute, to later inflate the stub, and an android:layout attribute, to reference what layout file to include and inflate. A stub lets you use a third attribute, android:inflatedId, which can be used to override the id of the root of the included file. Finally, the layout parameters specified on the stub will be applied to the roof of the included layout. Here is an example:

<ViewStub
android:id="@+id/stub_import"
android:inflatedId="@+id/panel_import"

android:layout="@layout/progress_overlay"

android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_gravity="bottom" />

When you are ready to inflate the stub, simply invoke the inflate() method. You can also simply change the visibility of the stub to VISIBLE or INVISIBLE and the stub will inflate. Note however that the inflate() method has the benefit of returning the root View of the inflate layout:

((ViewStub) findViewById(R.id.stub_import)).setVisibility(View.VISIBLE);
// or
View importPanel = ((ViewStub) findViewById(R.id.stub_import)).inflate();

It is very important to remember that after the stub is inflated, the stub is removed from the view hierarchy. As such, it is unnecessary to keep a long-lived reference, for instance in an class instance field, to a ViewStub.

A ViewStub is a great compromise between ease of programming and efficiency. Instead of inflating views manually and adding them at runtime to your view hierarchy, simply use a ViewStub. It's cheap and easy. The only drawback of ViewStub is that it currently does not support the <merge /> tag.

Happy coding!

Tuesday, March 3, 2009
no image

Android Layout Tricks #3: Optimize by merging

In the previous installment of Android Layout Tricks, I showed you how to use the <include /> tag in XML layout to reuse and share your layout code. I also mentioned the <merge /> and it's now time to learn how to use it.

The <merge /> was created for the purpose of optimizing Android layouts by reducing the number of levels in view trees. It's easier to understand the problem this tag solves by looking at an example. The following XML layout declares a layout that shows an image with its title on top of it. The structure is fairly simple; a FrameLayout is used to stack a TextView on top of an ImageView:

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent">

<ImageView
android:layout_width="fill_parent"
android:layout_height="fill_parent"

android:scaleType="center"
android:src="@drawable/golden_gate" />

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginBottom="20dip"
android:layout_gravity="center_horizontal|bottom"

android:padding="12dip"

android:background="#AA000000"
android:textColor="#ffffffff"

android:text="Golden Gate" />

</FrameLayout>

This layout renders nicely as we expected and nothing seems wrong with this layout:



A FrameLayout is used to overlay a title on top of an image


Things get more interesting when you inspect the result with HierarchyViewer. If you look closely at the resulting tree you will notice that the FrameLayout defined in our XML file (highlighted in blue below) is the sole child of another FrameLayout:

A layout with only one child of same dimensions can be removed

Since our FrameLayout has the same dimension as its parent, by the virtue of using the fill_parent constraints, and does not define any background, extra padding or a gravity, it is totally useless. We only made the UI more complex for no good reason. But how could we get rid of this FrameLayout? After all, XML documents require a root tag and tags in XML layouts always represent view instances.

That's where the <merge /> tag comes in handy. When the LayoutInflater encounters this tag, it skips it and adds the <merge /> children to the <merge /> parent. Confused? Let's rewrite our previous XML layout by replacing the FrameLayout with <merge />:

<merge xmlns:android="http://schemas.android.com/apk/res/android">

<ImageView
android:layout_width="fill_parent"
android:layout_height="fill_parent"

android:scaleType="center"
android:src="@drawable/golden_gate" />

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginBottom="20dip"
android:layout_gravity="center_horizontal|bottom"

android:padding="12dip"

android:background="#AA000000"
android:textColor="#ffffffff"

android:text="Golden Gate" />

</merge>

With this new version, both the TextView and the ImageView will be added directly to the top-level FrameLayout. The result will be visually the same but the view hierarchy is simpler:

Optimized view hierarchy using the merge tag

Obviously, using <merge /> works in this case because the parent of an activity's content view is always a FrameLayout. You could not apply this trick if your layout was using a LinearLayout as its root tag for instance. The <merge /> can be useful in other situations though. For instance, it works perfectly when combined with the <include /> tag. You can also use <merge /> when you create a custom composite view. Let's see how we can use this tag to create a new view called OkCancelBar which simply shows two buttons with customizable labels. You can also download the complete source code of this example. Here is the XML used to display this custom view on top of an image:

<merge
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:okCancelBar="http://schemas.android.com/apk/res/com.example.android.merge">

<ImageView
android:layout_width="fill_parent"
android:layout_height="fill_parent"

android:scaleType="center"
android:src="@drawable/golden_gate" />

<com.example.android.merge.OkCancelBar
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_gravity="bottom"

android:paddingTop="8dip"
android:gravity="center_horizontal"

android:background="#AA000000"

okCancelBar:okLabel="Save"
okCancelBar:cancelLabel="Don't save" />

</merge>

This new layout produces the following result on a device:

Creating a custom view with the merge tag

The source code of OkCancelBar is very simple because the two buttons are defined in an external XML file, loaded using a LayoutInflate. As you can see in the following snippet, the XML layout R.layout.okcancelbar is inflated with the OkCancelBar as the parent:

public class OkCancelBar extends LinearLayout {
public OkCancelBar(Context context, AttributeSet attrs) {
super(context, attrs);
setOrientation(HORIZONTAL);
setGravity(Gravity.CENTER);
setWeightSum(1.0f);

LayoutInflater.from(context).inflate(R.layout.okcancelbar, this, true);

TypedArray array = context.obtainStyledAttributes(attrs, R.styleable.OkCancelBar, 0, 0);

String text = array.getString(R.styleable.OkCancelBar_okLabel);
if (text == null) text = "Ok";
((Button) findViewById(R.id.okcancelbar_ok)).setText(text);

text = array.getString(R.styleable.OkCancelBar_cancelLabel);
if (text == null) text = "Cancel";
((Button) findViewById(R.id.okcancelbar_cancel)).setText(text);

array.recycle();
}
}

The two buttons are defined in the following XML layout. As you can see, we use the <merge /> tag to add the two buttons directly to the OkCancelBar. Each button is included from the same external XML layout file to make them easier to maintain; we simply override their id:

<merge xmlns:android="http://schemas.android.com/apk/res/android">
<include
layout="@layout/okcancelbar_button"
android:id="@+id/okcancelbar_ok" />

<include
layout="@layout/okcancelbar_button"
android:id="@+id/okcancelbar_cancel" />
</merge>

We have created a flexible and easy to maintain custom view that generates an efficient view hierarchy:

The resulting hierarchy is simple and efficient

The <merge /> tag is extremely useful and can do wonders in your code. However, it suffers from a couple of limitation:

  • <merge /> can only be used as the root tag of an XML layout

  • When inflating a layout starting with a <merge />, you must specify a parent ViewGroup and you must set attachToRoot to true (see the documentation of the inflate() method)

In the next installment of Android Layout Tricks you will learn about ViewStub, a powerful variation of <include /> that can help you further optimize your layouts without sacrificing features.

Download the complete source code of this example.

Wednesday, February 25, 2009
no image

Android Layout Tricks #2: Reusing layouts

Android comes with a wide variety of widgets, small visual construction blocks you can glue together to present the users with complex and useful interfaces. However applications often need higher level visual components. A component can be seen as a complex widget made of several simple stock widgets. You could for instance reuse a panel containing a progress bar and a cancel button, a panel containing two buttons (positive and negative actions), a panel with an icon, a title and a description, etc. Creating new components can be done easily by writing a custom View but it can be done even more easily using only XML.

In Android XML layout files, each tag is mapped to an actual class instance (the class is always a subclass of View.) The UI toolkit lets you also use three special tags that are not mapped to a View instance: <requestFocus />, <merge /> and <include />. The latter, <include />, can be used to create pure XML visual components. (Note: I will present the <merge /> tag in the next installment of Android Layout Tricks.)

The <include /> does exactly what its name suggests; it includes another XML layout. Using this tag is straightforward as shown in the following example, taken straight from the source code of the Home application that currently ships with Android:

<com.android.launcher.Workspace
android:id="@+id/workspace"
android:layout_width="fill_parent"
android:layout_height="fill_parent"

launcher:defaultScreen="1">

<include android:id="@+id/cell1" layout="@layout/workspace_screen" />
<include android:id="@+id/cell2" layout="@layout/workspace_screen" />
<include android:id="@+id/cell3" layout="@layout/workspace_screen" />

</com.android.launcher.Workspace>

In the <include /> only the layout attribute is required. This attribute, without the android namespace prefix, is a reference to the layout file you wish to include. In this example, the same layout is included three times in a row. This tag also lets you override a few attributes of the included layout. The above example shows that you can use android:id to specify the id of the root view of the included layout; it will also override the id of the included layout if one is defined. Similarly, you can override all the layout parameters. This means that any android:layout_* attribute can be used with the <include /> tag. Here is an example:

<include android:layout_width="fill_parent" layout="@layout/image_holder" />
<include android:layout_width="256dip" layout="@layout/image_holder" />

This tag is particularly useful when you need to customize only part of your UI depending on the device's configuration. For instance, the main layout of your activity can be placed in the layout/ directory and can include another layout which exists in two flavors, in layout-land/ and layout-port/. This allows you to share most of the UI in portrait and landscape.

Like I mentioned earlier, my next post will explain the <merge />, which can be particularly powerful when combined with <include />.

Thursday, February 19, 2009
Faster screen orientation change

Faster screen orientation change

Android is a mobile operating system meant to be run on a wide array of devices, with very different hardware configurations. Some devices, like the T-Mobile G1, can change their hardware configuration at runtime. For instance, when you open the keyboard, the screen change from the portrait orientation to the landscape orientation. To make Android applications development easier, the OS automatically handles configuration changes and restart the current activity with the new configuration. This is the default behavior that lets you declare resources like layouts and drawables based on the orientation, screen size, locale, etc. If you are not familiar with the way Android handles resources, I highly suggest you to read the official documentation on resources.

While this behavior is really powerful, since your application adapts automatically to the device's configuration at runtime, it is sometimes confusing for new Android developers who wonder why their activity is destroyed and recreated. Facing this "issue," some developers choose to handle configuration changes themselves which is, in my opinion, a short-term solution that will complicate their life when other devices come out or when the application becomes more complex. The automatic resource handling is a very efficient and easy way to adapt your application's user interface to various devices and devices configurations. It sometimes comes at a price though.

When your application displays a lot of data, or data that is expensive to fetch, the automatic destruction/creation of the activities can be lead to a painful user experience. Take the example of Photostream, a simple Flickr browsing application I wrote for the release of Android 1.0. After you launch the application and choose a Flickr account, the application downloads a set of 6 photos (on a T-Mobile G1) from the Flickr servers and displays them on screen. To improve the user experience, I also use slightly different layouts and drawables in portrait and landscape, and this is what the result looks like:

Photostream lets Android take care of the configuration change when the screen is rotated. However, can you imagine how painful it would be for the user to see all the images being downloaded again? The obvious solution to this problem is to temporarily cache the images. They could be cached on the SD card (if there's one), in the Application object, in a static field, etc. None of these techniques is adapted to the current situation: why should we bother caching the images when the screen is not rotated? Fortunately for us, Android offers a great API exactly for that purpose.

The Activity class has a special method called onRetainNonConfigurationInstance(). This method can be used to pass an arbitrary object your future self and Android is smart enough to call this method only when needed. In the case of Photostream, I used this method to pass the downloaded images to the future activity on orientation change. The implementation can be summarized like so:

@Override
public Object onRetainNonConfigurationInstance() {
final LoadedPhoto[] list = new LoadedPhoto[numberOfPhotos];
keepPhotos(list);
return list;
}

In the new activity, in onCreate(), all you have to do to get your object back is to call getLastNonConfigurationInstance(). In Photostream, this method is invoked and if the returned value is not null, the grid is loaded with the list of photos from the previous activity:

private void loadPhotos() {
final Object data = getLastNonConfigurationInstance();

// The activity is starting for the first time, load the photos from Flickr
if (data == null) {
mTask = new GetPhotoListTask().execute(mCurrentPage);
} else {
// The activity was destroyed/created automatically, populate the grid
// of photos with the images loaded by the previous activity
final LoadedPhoto[] photos = (LoadedPhoto[]) data;
for (LoadedPhoto photo : photos) {
addPhoto(photo);
}
}
}

Be very careful with the object you pass through onRetainNonConfigurationChange() though. If the object you pass is for some reason tied to the Activity/Context, you will leak all the views and resources of the activity. This means you should never pass a View, a Drawable, an Adapter, etc. Photostream for instance extracts the bitmaps from the drawables and pass the bitmaps only, not the drawables. Finally, remember that onRetainNonConfigurationChange() should be used only to retain data that is expensive to load. Otherwise, keep it simple and let Android do everything.

Monday, January 5, 2009
no image

Can I use this Intent?

Android offers a very powerful and yet easy to use tool called intents. An intent can be use to turn applications into high-level libraries and make code re-use something even better than before. The Android Home screen and AnyCut use intents extensively to create shortcuts for instance. While it is nice to be able to make use of a loosely coupled API, there is no guarantee that the intent you send will be received by another application. This happens in particular with 3rd party apps, like Panoramio and its RADAR intent.


While working on a new application, I came up with a very simple way to find out whether the system contains any application capable of responding to the intent you want to use. I implemented this technique in my application to gray out the menu item that the user would normally click to trigger the intent. The code is pretty simple and easy to follow:



/**
* Indicates whether the specified action can be used as an intent. This
* method queries the package manager for installed packages that can
* respond to an intent with the specified action. If no suitable package is
* found, this method returns false.
*
* @param context The application's environment.
* @param action The Intent action to check for availability.
*
* @return True if an Intent with the specified action can be sent and
* responded to, false otherwise.
*/
public static boolean isIntentAvailable(Context context, String action) {
final PackageManager packageManager = context.getPackageManager();
final Intent intent = new Intent(action);
List<ResolveInfo> list =
packageManager.queryIntentActivities(intent,
PackageManager.MATCH_DEFAULT_ONLY);
return list.size() > 0;
}

Here is how I use it:



@Override
public boolean onPrepareOptionsMenu(Menu menu) {
final boolean scanAvailable = isIntentAvailable(this,
"com.google.zxing.client.android.SCAN");

MenuItem item;
item = menu.findItem(R.id.menu_item_add);
item.setEnabled(scanAvailable);

return super.onPrepareOptionsMenu(menu);
}

In this example, the menu is grayed out if the Barcode Scanner application is not installed. Another, simpler, way to do this is to catch the ActivityNotFoundException when calling startActivity() but it only lets you react to the problem, you cannot predict it and update the UI accordingly to prevent the user from doing something that won't work. The technique described here can also be used at startup time to ask the user whether he'd like to install the missing package, you can then simply redirect him to the Android Market by using the appropriate URI.


Note: this article was originally posted on my personal blog.

Copyright © 2012 Android Developers Apps All Right Reserved
Shared by Themes24x7